Subscribe For Free Updates!

We'll not spam mate! We promise.

Properties of multiplication in integers


Properties of multiplication

Properties of multiplication - Multiplication in mathematics including basic arithmetic, because that we must know abou it. Before we to next step, you must know about multiplication and integers ( you can click here or here about it ).  After you know about multiplication, You will more easily understand about propersties of multiplication in integers.

Properties of Multiplication : 

a. the result of multiplying two integers can be determined based on the sign of the number.

        1. (+) x (+)  = (+) Example : 2 x 3 = 6
        2. (+) x ( - ) = ( - ) Example : 2 x (-2) = -4
        3. ( - ) x ( - ) = ( - ) Example : ( -2 ) x ( -3 ) = 6

b. The Commutativity of The Multiplication
       For any integer
           a x b = b x a
       Example : 5 x 2 = 10 or
                      2 x 5 = 10   ( the answer is same although the location of the exchanged )

c. The Assosiative of The Multiplication
       For any integer
         ( a x b ) x c = a x ( b x c )
       Example : ( 2 x 3 ) x 4 = 6 x 4   = 24 or
                      2 x ( 3 x 4 ) = 2 x 12 = 24 ( the answer is same althoungh the location of the                                                                                                     exchanged )  

d. Multiplication by Zero
      For multiplication by Zero you can click here

e. Distributive Properties
      1. Distributive properties of the summation
           For any integer
             a x ( b + c ) = ( a x b ) + ( a x c )
                  Example : 2 x ( 2 + 3 ) = ( 2 x 2 ) + ( 2 + 3 )
                                                    =     4       +      6     = 10
   
      2. Distributive properties of the reduction
            For any integers
              a x ( b - c ) =  ( a x b ) - ( a x c )
                 Example : 2 x ( 8 - 3 ) = ( 2 x 8 ) - ( 2 x 3 )
                                                  =     16     -     6      = 10

Share This Article Now !
SOCIALIZE IT →
FOLLOW US →
SHARE IT →

0 comments:

Post a Comment